China, the world’s largest emitter of carbon dioxide, has promised to become carbon neutral before 2060, and to begin cutting its emissions within the next ten years.To get more China news, you can visit shine news official website.
President Xi Jinping made the ambitious pledge to a virtual audience of world leaders at a meeting of the United Nations General Assembly last month. The news came as a surprise to many researchers, even in China, who weren’t expecting such a bold target. It’s the country’s first long-term climate goal, and will require China to rein in CO2 and probably other greenhouse gas emissions to net zero, which means offsetting gases that are released, for example by planting trees or capturing carbon and storing it underground.
In the wake of the announcement, Nature explores several proposals from influential research groups that work closely with the government for how China could reach neutrality before 2060. The plans differ in their details, but agree that China must first begin to generate most of its electricity from zero-emission sources, and then expand the use of this clean power wherever possible, for example switching from petrol-fuelled cars to electric ones. It will also need technologies that can capture CO2 released from burning fossil fuels or biomass and store it underground, known as carbon capture and storage (CCS).
The news of China’s carbon neutrality target is a “game-changer” for the global climate and could encourage other countries to act faster than they otherwise would have, says Mark Levine, a retired energy-policy researcher at Lawrence Berkeley National Laboratory in Berkeley, California.
For China to achieve its target, electricity production would need to more than double, to 15,034 terawatt hours by 2060, largely from clean sources, according to a proposal developed by Zhang Xiliang, a climate modeller at Tsinghua University in Beijing. This growth would be driven by a massive ramp-up of renewable electricity generation over the next 40 years, including a 16-fold increase in solar and a 9-fold increase in wind. To replace coal-fired power generation, nuclear power would need to increase sixfold, and hydroelectricity to double.
Fossil fuels, including coal, oil and gas, would still account for 16% of energy consumed, so would need to be paired with CCS or offset by new forest growth and technologies that can suck CO2 directly out of the atmosphere.
Zhang’s model, developed with the Massachusetts Institute of Technology in Cambridge, was part of a major national project on China’s low-carbon future, led by Tsingua University’s Institute of Climate Change and Sustainable Development. The work was presented at a meeting attended by environment officials on 12 October. “Our model is the primary one to support government policymaking,” says Zhang.